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Abstract
We investigate Ising ferrimagnets on square and simple cubic lattices with exchange couplings
between spins of values S = 1/2 and 1 on neighbouring sites and an additional single-site
anisotropy term on the S = 1 sites. Mainly on the basis of a careful and comprehensive Monte
Carlo study, we conclude that there is no tricritical point in the two-dimensional case, in
contradiction to mean-field predictions and recent series results. However, evidence for a
tricritical point is found in the three-dimensional case. In addition, a line of compensation
points is found for the simple cubic, but not for the square lattice.

1. Introduction

Mixed-spin Ising models have been studied for some time as
simple models of ferrimagnets, and there has been renewed
interest recently in connection with ‘compensation points’.
These are temperatures, below the critical temperature, at
which the sublattice magnetizations cancel exactly, giving zero
total moment. As the temperature is tuned through such a
point the total magnetization changes sign, which may be used
in technological applications. In this context, Ising models
may be exactly solvable in special cases [1–5] or they may be
studied by a variety of powerful approaches, including Monte
Carlo [6–11] or other [12–17] methods. In the present work
we revisit one of the simplest such models, a mixed-spin Ising
model with spins S = 1/2 and 1 occupying the sites of a
bipartite square or simple cubic lattice with the Hamiltonian

H = −J
∑

〈i, j〉
σi S j + D

∑

j∈B

S j
2 (1)

with couplings J between spins σi = ±1 on the sites of
sublattice ‘A’, and neighbouring spins Sj = 1, 0,−1 on sites
forming the sublattice ‘B’. D denotes the strength of a single-
ion term acting only on the S = 1 spins of sublattice B.
Following previous convention, we choose σi = ±1 rather than
±1/2, which has to be taken into account when calculating
sublattice magnetizations and when defining the compensation
point. The convention simply amounts to a rescaling of the
exchange coupling. Note that the nearest-neighbour coupling
J may be either antiferromagnetic, J < 0, as assumed often
for ferrimagnets, or ferromagnetic, J > 0. Both cases
are completely equivalent by a simple spin reversal on either

sublattice. We shall use in this article ferromagnetic couplings.
As a consequence, in our case the magnetizations of both
sublattices are identical at the compensation point, while in the
antiferromagnetic case, at the same compensation point, the
sublattice magnetizations have equal magnitude but different
sign leading to the above mentioned vanishing of the total
magnetization.

The model on the square lattice has been studied by
several authors. Kaneyoshi and Chen [14], via a mean-field
treatment, found a line of compensation points in a narrow
region 4 > D/J � 2 ln 6 (=3.583 . . .) and a tricritical
point at Dt/J = 3.72, i.e. a first-order transition for D >

Dt. Buendia and Novotny [9], using transfer matrix methods,
supplemented by Monte Carlo simulations, found no evidence
of either a compensation point or a tricritical point, although
a compensation point was observed in an extended model
with additional ferromagnetic interactions between σ spins.
More recently, Oitmaa and Enting [18] studied the same model
using a combination of high- and low-temperature series. No
compensation point was found, but evidence for a first-order
transition, and hence a tricritical point was observed from an
apparent crossing of the high- and low-temperature branches
of the free energy with different slopes, for D/J � 3.2. Thus
the phase diagram of this simple model remained uncertain,
motivating partly the present extensive Monte Carlo study,
improving previous simulations substantially. In fact, our study
provides clear evidence that the model in two dimensions has
no compensation point or tricritical point. Moreover, the model
is found to exhibit very interesting thermal behaviour, both for
the specific heat and the magnetization, especially in the low-
temperature region near D = 4, which has not been discussed
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Figure 1. Phase diagram of the mixed-spin model on a square lattice.

in detail before. This behaviour is the likely explanation for the
apparent ‘first-order’ behaviour observed in [18].

For the simple cubic lattice, to our knowledge, no detailed
analyses have been done so far. Of course, mean-field theory
may be easily applied, leading again to a tricritical point and a
line of compensation points.

The outline of the paper is as follows. In section 2
we present and discuss our results for the square lattice. In
section 3 we consider the simple cubic lattice. Here, in contrast
to the two-dimensional case, we find a clear occurrence of
a line of compensation points. Furthermore, we obtain clear
evidence of transitions of first order, and thence of a tricritical
point, which we locate approximately. In the final section, a
brief summary will be given.

2. The model on the square lattice

Let us first consider the ferrimagnet, equation (1), in the
case of a square lattice. We have performed mainly standard
Monte Carlo simulations, using the Metropolis algorithm with
single-spin flips, providing, indeed, the required accuracy, so
that there was no need to apply other techniques like cluster-
updates or the Wang–Landau approach [19]. We studied
lattices with L × L sites, employing full periodic boundary
conditions. L ranged from 4 to 80, to study finite-size effects.
Typically, runs of 107 Monte Carlo steps per spin have been
done, with averages and error bars obtained from evaluating
a number of such runs, at least three, using different random
numbers. These rather long runs lead to very good statistics,
improving appreciably results of previous simulations [8, 9].
The estimated errors, unless shown otherwise, are smaller than
the symbols depicted in the figures.

We recorded the energy per site, E , the specific heat, C ,
both from the energy fluctuations and from differentiating E
with respect to the temperature, and the absolute values of the
sublattice magnetizations of the two sublattices

|mA| =
〈∣∣∣∣

∑

A

σi

∣∣∣∣
〉/

(2(L2/2)) (2)

and

|mB| =
〈∣∣∣∣

∑

B

Sj

∣∣∣∣
〉/

(L2/2) (3)

as well as the absolute value of the total magnetization,

|m| =
〈∣∣∣∣

∑

A

σi +
∑

B

Sj

∣∣∣∣

〉/
L2 (4)

where the brackets <> denote the thermal average. Note the
factor of 1/2 in the definition of |mA|, taking into account
the correct length of the S = 1/2 spins, so that |mA(T =
0)| = 1/2, while |mB(T = 0)| = 1 for the ferromagnetic
ground state. In addition, the corresponding susceptibilities,
χA, χB, and χ , have been computed from the fluctuations
of the magnetizations. We also analysed histograms for the
total magnetization, p(m), i.e. the probability to encounter
a configuration with the magnetization m, as well as the
fourth-order cumulant of the order parameter, the Binder
cumulant [20], defined by

U = 1 − 〈m4〉/(3〈m2〉2) (5)

with 〈m2〉 and 〈m4〉 being the second and fourth moment of the
total magnetization. Finally, we monitored typical equilibrium
Monte Carlo configurations, illustrating the microscopic
behaviour of the system.

To test the accuracy of the simulations, we computed
numerically exact results for various quantities by enumerating
all possible configurations for small lattices with L = 4.

In agreement with previous work, the model is observed
to display a ferromagnetic ground state and low–temperature
phase for D/J < 4. The energy to flip a B spin from
its ferromagnetic orientation, ‘+’ or ‘−’, surrounded by four
A spins of the same orientation, to the state 0 is obviously
�E = 4J − D which vanishes at D = 4J . Hence the ground
state at D/J = 4 will comprise configurations with ‘0’ states
on B sites and arbitrarily oriented spins on the neighbouring
A sites, as well as ferromagnetic plaquettes (of either sign) on
B sites and neighbouring A sites. Due to the resulting high
degeneracy, one may call (D/J = 4, T = 0) the ‘degeneracy
point’. For D > 4J at zero temperature, all B spins will
be in the state 0, with the A spins being randomly oriented.
This leads to a lower, but still macroscopic degeneracy. At
D/J � 4, there is no ordered phase even at zero temperature.

Most of our Monte Carlo work deals with the interesting
range 3 � D/J < 4, which had been discussed controversially
before, augmented by some simulations at lower values of
D/J . The resulting phase diagram is depicted in figure 1,
based on monitoring the size dependence of the position of
the (critical) maxima in the specific heat and susceptibility,
and the intersection points of the Binder cumulant, see below.
Our findings are in accordance with a continuous transition in
the Ising universality class for all values of D/J we studied,
D/J � 3.98. There is no compensation point.

In the following, we shall discuss main properties of the
physical quantities mentioned above.

The specific heat C , for negative or relatively small
positive D/J , is observed to resemble qualitatively that of
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Figure 2. (a) Specific heat at D/J = 3.0, showing numerically exact, for L = 4 (solid line), and Monte Carlo data for sizes L = 10 (circles),
20 (squares), 40 (diamonds) and 60 (triangles). (b) Specific heat at D/J = 3.8, showing numerically exact, for L = 4 (solid line), and Monte
Carlo data for sizes L = 20 (circles), 40 (squares) and 80 (diamonds).

the nearest-neighbour Ising model on a square lattice. There
is a unique maximum in C(T ), for finite L, turning into a
logarithmic singularity in the thermodynamic limit. Indeed,
in the limit D/J → −∞, one recovers the simple Ising
model. Increasing D/J , as displayed in figure 2(a) for
D/J = 3.0, an additional shoulder or maximum evolves at
a lower temperature, Tl, being largely independent of lattice
size and being non-critical. Its origin becomes clear by further
increasing D/J , as shown in figure 2(b) for D/J = 3.8.
In fact, one finds kBTl/J ≈ 0.42(4 − D/J ), reflecting the
thermally activated flipping of B spins from the ferromagnetic
state ‘1’ (or ‘−1’) to the state zero, requiring, as stated above,
an energy proportional to 4 − D/J . It is interesting to note
that the height of the pronounced non-critical peak, signalling
the partial disordering of the B sublattice, depends only very
weakly on D/J . In the range 3.5 � D/J < 4, one has
C(Tl) ≈ 0.22.

As illustrated in figure 2(b) for D/J = 3.8, the critical
peak, located at Tm, may separate from the upper maximum,
at Tu, when increasing the strength of the single-ion term.
Thus, the specific heat may display a three-peak structure,
with two non-critical maxima and a critical peak in between.
The origin of the maximum at Tu is due to the fact that at
the critical point, the σ spins on the A sublattice form rather
large clusters of different orientations, leading to the vanishing
of the order parameter. That behaviour may be seen by
monitoring typical equilibrium configurations. These clusters
shrink quickly near Tu, due to thermally activated flipping of
σ spins, determined by the coupling constant J . Indeed, Tu

is essentially independent of D. As seen in figure 2(b), the
maximum in C at Tu depends rather weakly on the size of the
lattice, L, demonstrating its non-critical character.

The height of the critical maximum at Tm is expected,
for Ising universality, to increase logarithmically with L for
sufficiently large values of L. Our results are consistent with
this expectation. However, on approach to the degeneracy
point, the background contribution to the specific heat becomes
more and more relevant. Then larger and larger lattices, with
L exceeding a critical value, L0, are needed to approach the
anticipated logarithmic behaviour. For example, at D/J =
3.6, one gets L0 ≈ 40, and 60 at D/J = 3.95. In fact, in that

Figure 3. Sublattice magnetizations |mA| and |mB| at D/J = 3.8
(circles) and 3.95 (diamonds), with lattices of size L = 40 (dashed
lines) and 60 (solid lines).

range, the Ising-like character of the transition may be inferred
more clearly from other quantities, as discussed below.

The partial disordering of the B sublattice, near Tl, leads
to a rapid decrease of the magnetization |mB|, as illustrated
in figure 3. Actually, the anomaly in |mB| becomes more
and more dramatic on approach to the degeneracy point. In
contrast, the magnetization of the A sublattice, |mA|, is hardly
affected by the disordering of the B sublattice. Indeed, this
behaviour may open the possibility of a compensation point, at
which the two sublattice magnetizations, |mA| and |mB|, would
coincide. However, as depicted in figure 3, we find no evidence
for such a compensation point in two dimensions for all cases
we studied, with D/J going up to 3.95.

The susceptibility χ is found to show, in all cases we
studied, only one maximum, close to the critical temperature.
The background term is much weaker than for the specific
heat, allowing an analysis of critical properties for smaller
lattices. In fact, as illustrated in figure 4, the size dependence
of the height of the maximum in χ , χmax(L), is observed to
be nicely compatible with the asymptotic form χmax ∝ L7/4,
expected for the Ising universality class, for all cases studied
and sufficiently large lattices. Note that the susceptibility
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Figure 4. Log–log plot of the susceptibility χmax versus system size
L for the square lattice at D/J = 3.6 (circles), 3.8 (squares) and 3.95
(diamonds). For comparison, the dashed line shows χmax ∝ L7/4.

shows a very mild anomaly near Tl, where the specific heat
shows a pronounced maximum, close to the degeneracy point.
At that anomaly, χ(T ) exhibits a maximal slope, as may be
easily identified using exact enumeration for small lattices. We
do not include a special figure to depict the very weak anomaly.
The shrinking of the A clusters, as indicated by the broad
maximum in C at Tu, leads to no obviously unusual features
in the susceptibility.

As usual, one may estimate the bulk transition
temperature, Tc, from the size dependent position of the
corresponding peaks in χ and C . We obtain consistent
estimates, shown in figure 1, with the location of the maxima
varying, for large L, proportionally to 1/L, as expected
for Ising-like transitions. Of course, one gets distinct
proportionality factors for the two quantities.

The transition temperature may be also conveniently
estimated from the Binder cumulant, U . Indeed, the estimates
follow from the location of the intersection temperatures of
the cumulants for different lattice sizes [20]. Finite-size
corrections often turn out to be rather small. Actually, this
is also true for the present model, as shown in figure 5 for
D/J = 3.95. We find very good agreement with the estimates
of Tc based on the susceptibility and the specific heat. Note that
the value of U at the intersection temperature is, already for
fairly small systems sizes, close to the accurately known [21]
critical Binder cumulant U ∗ = U(Tc, L = ∞) for isotropic
Ising models, U∗ = 0.6069 . . .. One may emphasize that
anisotropic interactions and correlations may lead to non-
trivial dependencies of U ∗ on such interactions [22, 23].
However, here we are dealing with an isotropic system,
and excellent agreement with the known critical value is
observed, demonstrating that the transition belongs to the Ising
universality class.

Additional insight into the phase transition is provided
by the histograms for the total magnetization, p(m). An
example is displayed in figure 6. As expected for a continuous
transition, p(m) shows, in the ferromagnetic low-temperature
phase, two symmetric peaks, at ±m0, moving closer and closer
to each other on approach to Tc and when increasing the lattice
size. Above Tc, p(m) tends to acquire a Gaussian shape [20].

Figure 5. Binder cumulant U(L , T ) at D/J = 3.95 for L = 20
(circles), 40 (squares), 60 (diamonds), and 80 (triangles). The
horizontal line indicates the critical Binder cumulant of an isotropic
Ising model in the thermodynamic limit [21].

Figure 6. Histogram of the total magnetization, p(m), for the square
lattice with L = 20 at D/J = 3.98 and temperatures below and
above the transition, kBT/J = 0.04, 0.05, 0.06, and 0.07 (peak
positions moving towards the centre), with kBTc/J ≈ 0.051.

We emphasize that figure 6 refers to the case D/J = 3.98,
i.e. very close to the degeneracy point. There is no indication
of a transition of first order, which might be signalled by a
central peak, in addition to the two peaks at ±m0, as would
be the case for coexistence of the disordered and ordered
phases. Accordingly, we may safely conclude, based on the
analysis of several quantities, that we have clear evidence for
continuous transitions of Ising-type along the boundary of the
ferromagnetic phase, at least for the region D/J � 3.98.

3. The model on the simple cubic lattice

Let us now turn to the analysis of the mixed-spin model,
equation (1), on a simple cubic lattice. In complete analogy
to the two-dimensional case, we did standard Monte Carlo
simulations, applying the Metropolis algorithm. We studied
lattices with L3 sites, with L ranging from 4 to 32. Full
periodic boundary conditions were employed. Typically, runs
of 2×106–5×106 Monte Carlo steps per spin were performed,
averaging over a few, at least three, such runs to estimate
thermal averages and error bars.

4



J. Phys.: Condens. Matter 22 (2010) 076004 W Selke and J Oitmaa

Figure 7. Phase diagram of the mixed-spin model on a simple cubic
lattice. The solid line denotes the boundary of the ferromagnetic
phase, while the dashed line denotes compensation points.

As for the square lattice, the energy E , the specific heat C ,
magnetizations |mA|, |mB|, and |m|, as well as corresponding
susceptibilities, the Binder cumulant U , and histograms for
the total magnetization, p(m), were recorded. Typical Monte
Carlo equilibrium configurations were generated to illustrate
the microscopic behaviour.

For the cubic lattice, one has a ferromagnetic ground state
at D/J < 6. The degeneracy point occurs now at D/J = 6,
with ground states comprising local ferromagnetic plaquettes
of neighbouring A and B spins as well as B spins in the state
0 with surrounding A spins being randomly oriented. For
D/J > 6, a high, but reduced degeneracy prevails, with all
B spins being zero, and the A spins pointing randomly ‘up’ or
‘down’.

For D/J small or negative, a continuous transition of
Ising-type is expected to occur, as we confirm in simulations
with moderate efforts. Most of our work has been done for
3.5 � D/J < 6, to identify possible deviations from that
kind of transition. Indeed, significant deviations from Ising
universality have been observed for D/J � 5.9, while for
smaller values of D/J the simulational data are consistent with
an Ising-like transition. In addition, we identified and located
a line of compensation points in the range 5.5 < D/J < 6.
The main features of the phase diagram are summarized in
figure 7. The phase transition line is based on analysing various
quantities and taking into account finite-size effects, as for the
square lattice. Details of our Monte Carlo findings will be
discussed in the following.

The specific heat C(T ) shows for small and negative
values of D/J a single maximum, giving rise to critical
behaviour in the thermodynamic limit. In case of an Ising-like
transition, its height is expected [24] to grow like Cmax ∝ Lα/ν

with the critical exponents of the Ising universality class, α ≈
0.11 and ν ≈ 0.63 [25]. Our simulational findings confirm this
scenario. As in the case of the square lattice, upon increasing
D/J , one encounters, eventually, three maxima in C(T ), see
figure 8. In complete analogy to the two-dimensional case,
the peak at the lower temperature, Tl, is rather sharp and
depends only very weakly on lattice size. It signals the partial
disordering of the B sublattice, with B spins being flipped

Figure 8. Specific heat versus temperature for the model on the
simple cubic lattice at D/J = 5.9 for systems with L = 4 (circles),
10 (squares), 16 (diamonds), 20 (triangles up) and 32 (triangles left).

thermally from the ferromagnetic (‘+’ or ‘−’) state to 0. The
maximum occurs at kBTl/J ≈ 0.6(6−D/J ). The upper, rather
broad maximum, at Tu, is non-critical as well, stemming from
dissolving the, at criticality still quite large spin clusters on the
A sublattice. Tu is only very weakly affected by the strength
of D, being determined by the ferromagnetic coupling J . In
between the two non-critical maxima in C(T ), a critical peak
shows up. It signals the transition, at which both sublattice
magnetizations vanish, with quite pronounced local spin order
on the A sublattice.

The type of the transition may be inferred from the size
dependence of the critical peak, Cmax(L). Indeed, for single-
ion terms up to D/J = 5.8, we find agreement with an
Ising-type transition, α/ν ≈ 0.17. On further approach to
the degeneracy point, accurate Monte Carlo data with a fine
temperature resolution are required, due to the rather large
nonanalytic background term in C and the sharpness of the
peak. In fact, other quantities may provide more easily and
clearly reliable clues on the type of transition for that part of
the transition line of the ferromagnetic phase.

Before discussing further the type of the phase transition
close to the degeneracy point, we shall deal with the
compensation points. Indeed, we identified such points in the
range 5.5 < D/J < 6. The resulting line is depicted in
figure 7. Two concrete examples are shown in figure 9, for
D/J = 5.7 and 5.9. As may be inferred from that figure, the
sublattice magnetization at the compensation point decreases
monotonically with decreasing single-ion term. Therefore,
when the compensation occurs at low magnetizations, the
accurate location of the compensation point is difficult,
because of strong finite-size effects in the critical region.
On the other hand, with increasing D/J , the compensation
point moves towards lower temperatures, and finite-size effects
play usually no significant role. In any event, in contrast
to the two-dimensional case, we find a line of compensation
points for the simple cubic lattice. Obviously, the decrease
in the magnetization of the B sublattice, |mB|, occurs in three
dimensions more drastically than for the square lattice, while
|mA| changes there rather mildly in both cases.
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Figure 9. Sublattice magnetizations |mA| and |mB| for the simple
cubic lattice with L = 20 at D/J = 5.7 (circles) and 5.9 (squares).

Let us now turn back to the discussion on the type of phase
transition. For D/J � 5.8, the data on the susceptibility χ

confirm the Ising-like character of the transition. In particular,
the size dependence of the height of the maximum in χ ,
χmax(L), is found to be consistent with Ising criticality, χmax ∝
Lγ /ν , where γ ≈ 1.24 and ν ≈ 0.63, thus γ /ν ≈ 1.97.
Indeed, from our simulational data we obtain characteristic
exponents close to 2. However, at D/J = 5.9, we observe, for
systems sizes ranging from L = 8 to 32, a substantially lower
(effective) exponent, of about 1.7. Because the peak in χ gets
extremely sharp, very accurate simulational data with a very
fine temperature mesh are needed to arrive at safe conclusions.
A more convenient way to monitor the possible change in the
type of the transition will be discussed below.

Interestingly, our analysis of the Binder cumulant U seems
to indicate substantial deviations from an Ising-like transition
at about D/J ≈ 5.9 as well. For smaller values of D/J
the intersection values of the cumulant curves for different
system sizes, already for fairly small systems, seem to agree
with the expected asymptotic value of the critical Binder
cumulant for isotropic Ising systems [26], U∗ ≈ 0.465.
An example is depicted in figure 10(a), for D/J = 5.5,
with the intersection points, for the simulated finite lattices,
approaching the asymptotic value from below, when increasing

the system size. At larger single-ion anisotropy, D/J � 5.9,
the intersection points of the curves are appreciably lower than
U∗, as shown in figure 10(b) for D/J = 5.9. However, it is not
completely clear, whether the tendency reflects stronger finite-
size effects or a change in the type of the phase transition.

To get more evidence for a possible change of the nature
of the transition, the histograms for the magnetization, p(m),
turned out to be most instructive. Already for small lattices,
L = 4, one sees, close to the transition, a qualitative change
of the histograms. We did simulations close to the transitions
in the range 5.85 � D/J � 5.98, using an increment
of 0.01. We observe a dramatic change in the form of the
histograms around D/J ≈ 5.91. Below that value, there is
no central peak and thus no indication of phase coexistence
when crossing the transition, in contrast to the situation closer
to the degeneracy point, where a central peak, in addition
to the symmetric peaks at ±m0, indicates coexistence of the
ordered and disordered phases and, accordingly, a transition
of first order. That distinction persists for larger system sizes.
Examples are displayed in figures 11(a), for D/J = 5.85,
and 11(b), for D/J = 5.975. Based on these observations,
we may tentatively locate the tricritical point at D/J = 5.91±
0.03. Note that such a change in the form of the histograms
does not occur in two dimensions, as has been discussed above,
see also figure 6.

In summary, the present analysis on the mixed-spin model
on a simple cubic lattice shows clearly a line of compensation
points, and allows to locate approximately the tricritical point.

4. Summary

We have studied a mixed-spin Ising model with ferromagnetic
couplings, J , between spins 1/2 and 1 on neighbouring sites
of square and simple cubic lattices, the two types of spins
forming a bipartite lattice. An additional quadratic single-ion
term, D, acts upon the S = 1 spins. We mainly used standard
Monte Carlo simulations to compute various thermodynamic
properties as well as the Binder cumulants and histograms of
the total magnetization.

The model on the square lattice has been shown to display
a continuous phase transition of Ising-type, presumably up to
the degeneracy point at D/J = 4. No compensation point

Figure 10. (a) Binder cumulant U versus temperature at D/J = 5.5 for lattices with L = 8 (circles), 12 (squares), 16 (diamonds) and
20 (triangles). (b) U versus temperature at D/J = 5.9 for lattices with L = 10 (circles), 16 (squares), 20 (diamonds), and 32 (triangles). The
horizontal lines indicate the critical Binder cumulant of an isotropic three-dimensional Ising model in the thermodynamic limit [26].
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Figure 11. (a) Histogram of the total magnetization, p(m), for L = 8 and D/J = 5.85, at temperatures crossing the transition,
kBT/J = 1.32, 1.36, 1.40, 1.44, and 1.48, where the maxima move towards the centre with increasing temperature. (b) p(m) for L = 8 and
D/J = 5.975, at temperatures crossing the transition, kBT/J = 0.47, 0.51, 0.55, 0.59, and 0.63, where the central peak grows in height with
increasing temperature.

has been found. Close to the degeneracy point, the model
displays an intriguing three-peak structure in the specific heat
as a function of temperature. The sharp, but non-critical
anomaly at low temperatures arises from flipping S = 1 spins
into the state 0, while the broad non-critical maximum at high
temperatures stems from thermal activation of spins in fairly
large clusters of S = 1/2 spins persisting above the phase
transition. At temperatures in between, the critical peak shows
up. Both anomalies may cause difficulties in low- and high-
temperature expansions, which have predicted, incorrectly,
the existence of a tricritical point. The suggestion on the
absence of a compensation point has been confirmed, albeit the
magnetization on the S = 1 sublattice decreases rapidly near
the anomaly of the specific heat at low temperatures.

In the case of the simple cubic lattice, the specific heat
displays a similar three-peak structure, with two non-critical
maxima and the critical peak in between. Sufficiently far away
from the degeneracy point, the ferromagnetic phase disorders
via a continuous, Ising-like transition. In the vicinity of the
degeneracy point, D/J = 6, this transition seems to be of first
order. The evidence for that kind of transition is mainly based
on the type of the histograms of the magnetization, showing
phase coexistence. We tentatively locate the tricritical point
at D/J = 5.91 ± 0.03. In addition, we determined a line
of compensation points, arising from the degeneracy point.
Thus, in three dimensions, the mean-field theory appears to
give at least qualitatively correct predictions. However, in two
dimensions the mean-field theory is found to be incorrect, even
qualitatively.
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